If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-5x-200=0
a = 3; b = -5; c = -200;
Δ = b2-4ac
Δ = -52-4·3·(-200)
Δ = 2425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2425}=\sqrt{25*97}=\sqrt{25}*\sqrt{97}=5\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5\sqrt{97}}{2*3}=\frac{5-5\sqrt{97}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5\sqrt{97}}{2*3}=\frac{5+5\sqrt{97}}{6} $
| 3y-2y=12-5 | | 10x-20=2x+11 | | 223-v=292 | | -6x-7(3x+23)=55 | | 16=8+2g | | z-1+5=2 | | (2x+19)+(6x-5)=180 | | u-163=206 | | 5x-0.4=4x+1/3 | | 254=78-v | | 100m=40+2m | | 0=50+3t-4.9t^2 | | -2+9=2n | | 15x-1/5=12x | | x+20+114=180 | | 230=4-v | | 206=163-u | | 2x-1/2x=30 | | 85+2f=685 | | 96=4y+5y+3+4y+5y+3 | | -2+3y=-11 | | 6,5=10-7y | | -4x-4(5x-23)=260 | | 5g-4-5=1 | | 42-u=268 | | 6x+1=4x+16 | | 2x-1=6x+1=4x | | 7a+5=90 | | 2+1/6=x | | 15x-0.20=12x | | (x+9)(x-5)=(x+1)^2 | | 26-3s=9s |